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Two fundamental relationships describing natural phenomena are posited to be functions of the free space 
in which atoms and molecules are confined and interact. These relationships are the Boltzmann energy 
distribution principle and the equation of state. In both cases the free space is that space available to the 
centers of mass of the atoms and molecules as they move randomly in translational motion. The hard 
core volume of atoms and molecules is not available for translational motion of their centers of mass and 
is excluded from the volume function in both Boltzmann’s principle and the equation of state. Only in 
this way is i t  possible: 1 )  to apply Boltzmann’s principle to the distribution of atoms or molecules between 
the two energy states of two phases in equilibrium; solid-gas, liquid-gas or solid-liquid and 2) to apply 
the equation of state to the gas, liquid or solid phase in order to determine the internal pressure exerted 
by the translational motion of atoms or molecules and to deduce the internal tension in the cohesion 
between atoms or molecules. These relationships are applied to  water for the determination of the molar 
free space and molar hard core volumes of pure water. 

KEY WORDS: Equation of state, Boltzmann law. 

INTRODUCTION 

Boltzmann’s principle describes the distribution of molecules (or atoms) between two 
energy states provided there is a reversible exchange of molecules between the energy 
states and provided they are in equilibrium. The molar internal energy, molar 
enthalpy and molar entropy of the molecules (or atoms) may differ, depending on 
the phase of the molecules or the external force field applied to them. However, at 
constant and uniform temperature, the Gibbs free energy is the same for all molecules 
(or atoms) of pure species i when two of its phases are in equilibrium. Distribution 
of molecules (or atoms) between differing energy states due to phase changes in pure 
species i will be considered first; and this treatment will serve to introduce the 
concepts of internal pressure and tension, free space volume and hard core volume 
of pure species i. I shall posit that the free space volume is required for the Boltzmann 
energy distribution principle as well as for calculating the internal pressure and 
tension of species i. Then, these concepts and the Boltzmann principle will be applied 
to pure water molecules in equilibrium in two energy states: between liquid and 
vapor, between ice and vapor and between ice and liquid. 
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70 H. T. HAMMEL 

Internal energy ofpure species i 

In this section and the next, there are restatements of well known concepts expressed 
in the notation used by McGlashan'. The molar internal energy of pure species i is 
denoted U;'(T, p:) and is a function of the phase of i as well as a function of the 
temperature and external pressure applied to it. 2 denotes the phase of species i and 
the asterisk denotes purity, i.e. only one component. The molar internal energy of 
species i changes with change of phase at the same temperature and applied pressure. 
For a change from pure solid i to pure liquid i, the change in molar internal energy 
at the same Tl'+'* (melting temperature of solid i) and applied pressure (pf = 
Pe I' = P e  s ' + 1 * )  is AU~'+''(TSt+'*,p~t'*) = ~'Jfl(Tf"'*, pc) - ~~*(Tf .+ ' * ,  pr ) , .  For a change 
from pure liquid i to pure vapor i at the same T and applied pressure (pf = 
p g  = p: + q*)? A u;* + g*( T ,  p:  + 9') = up*( r, pg) - u:( T ,  pf). 

Efects of heur and presswe volume work on internal energy at constant, applied T 
and p 

During a phase change at constant temperature and constant external pressure, there 
is a change of internal energy requiring an amount of heat, kSQ, added to or 
removed from the constituents and/or an amount of pressure work, +&I+! done on 
or by the constituents according to the first law of thermodynamics, that is, 

In order for the ternperature to remain constant during a change of phase, heat 
may be added to or removed from the molecules of i when and. as they react 
physically in changing phase. Pressure volume work is always done on or by the 
constituents as they react physically during a change of phase. Pressure volume work 
is performed by the system when there is a volume increase at constant applied 
pressure, peAV At the same time, any decrease of applied pressure will increase the 
pressure volume work performed by the system an amount VAp at constant volume. 
Change of pressure (and internal energy) as pure i changes phase may result from a 
change in the external pressure applied to i t ,  +Apt,, and it always results from a 
change of internal pressure of species i during a phase change. One purpose of this 
article is to examine the consequences of the change in internal pressure of pure 
species i when it changes phase. But first, the free space volume of species i is required 
before its internal pressure and internal tension can be determined in pure i .  

Volumes occupied by pure species i 

The molecules (or atoms) of a mole of pure species i may be viewed as occupying 
three spaces concurrently: its molar volume, its molar hard core volume, and its 
molar free space volume. The center of mass of each molecule of species i is excluded 
from moving within a hard core space as it collides with other molecules in the same 
total space. This excluded space depends on the size, shape and charge distribution 
of the molecules which collide. I t  also depends on the number of molecules (or atoms) 
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EQUATION OF STATE AND BOLTZMANNS LAW 71 

involved in each collision and, therefore, it depends on the phase. However, the 
excluded space per collision is the same whether the molecule collides with only one 
molecule or with many molecules at the same time. For a mean radius of molecule 
i, ai, the excluded space for each of its collisions, uhci, is the forward half of a 
hemisphere of radius 2ai when it collides with another of the same species, i.e. 
uhci = 2/37c(20~)~ (c.f. Loeb2). When all collisions are binary, as in a gas at low 
temperature, the volume of the excluded space in a mole of species i is Lu&, since 
there are L (Avagadro's constant) molecules of i in one mole. Each of the L molecules 
collides with only one other molecule at a time so that there are L exclusions 
altogether in a mole of gas. When collisions include ternary and higher order 
collisions, as in the liquid phase, then there are many fewer than L exclusions 
altogether in a mole. The exclusion space for a collision of a molecule with two or 
more molecules at the same time remains about 2/3n(2aJ3 for pure liquid i. However, 
the molar exclusion volume of pure i in liquid phase is much less than Lucci by an 
amount depending on the proportion of higher order collisions. Increasing tempera- 
ture increases the number of collisions per unit time and also increases the proportion 
of higher order collisions and, for this reason, reduces the molar hard core volume 
of pure liquid i. 

The total volume occupied by a molecule of species i is more variable than its hard 
core volume and is determined by its random translational motion as it collides with 
and is reflected by surrounding atoms or molecules. The total volume occupied by 
species i in phase a is V"' = np*Vf* where n;' is the moles of species i in phase a and 
Vp* is the molar volume of pure i in phase a. Within the total volume, V'*, there is 
the total hard core volume, V 5 ,  not available for the motion of the center of mass 
of the molecules i. There is a third volume associated with these molecules. It is the 
volume available for the random translational motion of the center of mass of its 
molecules and is denoted Vys for the total free space volume. Thus, the total volume 
of the pure substance i is the sum of the total hard core and free space volumes, 
Va* = + VFs, where VE = nf*Vifi and V$ = n:*VFfi and where V;:, is the molar 
hard core volume of species i and V& is its molar free space volume. It should be 
noted that VYsi is much more variable than V;fi with respect to temperature and 
pressure applied to substance i. 

The volume of the molar free space available to the centers of mass of species i is 
an important volume conceptually. It is the principal volume that is compressible in 
the gaseous, liquid, as well as in the solid phase of species i. This volume varies as 
temperature and pressure applied to species i vary and as the forces between 
molecules of species i are affected by their order at a given T and pe in phase a. Thus, 
Vq*(T, p z )  is variable in any phase a largely (but not exclusively) because VFsi is 
variable and depends on T and p :  and on the internal energy and the extent the 
molecules of species i are ordered at a given T,  p z .  As we shall see, the volume of 
the molar free space available to the centers of mass of species i is the volume into 
which molecules of species i are distributed in each of two energy states when they 
are in equilibrium. It is also the volume to be used in the equation of state of species 
i, that is, the equation which relates pressure, volume and temperature for species i 
in any phase. 
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12 H. T. H A M M E L  

Boltzmann energy distribution principle applied to physical reactions 

A fundamental relationship affecting the atoms or molecules of a substance in two 
or more energy states in equilibrium is the Boltzmann distribution principle. This 
statistical principle governs the distribution of atoms or molecules between an initial 
molar energy state, Ui, before and a final molar energy state, U,, after a chemical 
or a physical reaction. The principle assumes the reaction is reversible, proceeds until 
equilibrium is established between atoms or molecules in the two energy states and 
provided that quantum mechanical effects are not important, that is, (Uf - Ui) 9 R T  
or ( U ,  - Vi) 6 R T .  Boltzmann’s principle was derived from the theory of probability 
applied to an assemblage of N similar molecules in a gaseous phase. The energies of 
the molecules may differ in amount and kind. However, if there are N i  each with an 
amount and form of energy E ~ ,  then the total number of molecules would be N = CiNi 
and the total energy would be Q == CiNiei. Using the principles of statistical mech- 
anics, Glasstone3 shows that the number of molecules Ni possessing the energy 
E~ at any absolute temperature T is 

N i  = Ce-LlikT, 

where C is a constant and k is Holtzmann’s constant. The principle makes no 
restrictions as to the nature of the energies obtaining to the molecules; their energies 
might be kinetic energy of translation or rotation or vibration or their potential 
energy might vary in a non-uniform force field applied to them. The principle is often 
applied to gases subject to the gravitational field of the earth and is thereby called 
the law of the atmosphere as it describes the distribution of gases of the atmosphere 
as a function of altitude. assuming uniform temperature throughout the atmosphere. 

Perrin4 applied Boltzmann’s principle to the distribution of dense colloidal 
particles of gamboge and mastic. From his observations of their distribution in liquid 
water in the earth’s gravity field, he was able to explain Brownian motion and to 
establish the reality of atoms and molecules. Moreover, he obtained a good approxi- 
mation of Avogadro’s constant from these observations. 

Feynman’ notes “ I t  turns out that there are munv, manyphenornenu in nature which 
are characterized h j  haciny to harrow un energj. .from somewhere, and in which the 
central feature of the teniperature im-Wion is e to the minus energy over kT.  ” Feynman 
considers that an evaporating liquid is one of the phenomena to be studied, albeit 
relatively complicated. He states further “Noit, we use the general princQle that the 
number of utoms per unit volume in tu-0 diferent regions is n,jn, = e-(E2-E1)1kT.” 
Feynman supposes “thut there is a jorce of attruction bern,een the niolerules to hold 
them together in the liquid. Otherri’ise we ccinnot understand why it condenses. ’ ’ 
Furthermore, he supposes “that there is an energ?, qfbinding o f t h e  molecules in the 
liquid itihich is lost rthen the? go into the cupor. That is-in order to take a single 
molecule out qf the liquid into the Gapor, a certain amount of work W has to be done. 
There is a certain diflerence, W, in the energy of u molecule in the liquid f rom what it 
would haw if it were in the  upo or, because we hace to pull it uwuy jrom the other 
molecules which attract it.” Feynman then uses the general principle stated by 
Boltzmann: “So the number n per unit volume in the rapor, dii?ided by the number 
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EQUATION OF STATE AND BOLTZMANNS LAW 73 

1/  V,, per unit volume in the liquid, is equal to nV, = e -  W l k T ,  because that is the general 
rule.” Feynman gives no examples to illustrate the value of W for any liquid. 
Nevertheless, there is no reason to disallow the application of Boltzmann’s general 
principle to the liquid phase of water or to its equilibrium with its vapor. 

When atoms or molecules A are involved in a physical reaction between two energy 
states such that atoms or molecules A, in energy state 1 are in equilibrium with 
atoms or molecules A, in energy state 2, then nAl moles of A, in a unit volume 
available to the centers of mass of atoms or molecules Al  and n,, moles of A, in a 
unit volume available to the centers of mass of atoms or molecules A, are distributed 
according to Boltzmann statistics, namely, 

% - - , -(UA:-UAI)/RT, 

nA 1 

where U, ,  and U,, are the molar energies in states 1 and 2, respectively, and 
where R = kL, the product of Boltzmann constant and Avogadro constant. Equation 
(2) is rigorous only if (UA, - UAJ 9 RT or ( U A ,  - u.41) G RT. 

Maxwell’s principle was derived for the distribution of velocities of molecules in a 
gas and his principle may also be derived from Boltzmann’s principle. The distribu- 
tion of velocities of the molecules in the liquid and vapor phases of the same species 
are identical at the same temperature. It follows that Boltzmann’s principle as well 
as Maxwell’s principle apply to the distribution of molecules of species i in any phase 
when these molecules, which for any reason differ in energy, are in equilibrium and 
can reversibly change from one energy state to another. For example, the energy of 
molecules in the vapor phase is higher than the energy of molecules of the same 
species in its liquid phase at the same T.  Likewise, the molecules in the liquid phase 
have higher energy than those in the solid phase at the same T. Nevertheless, the 
molecules may reversibly pass from one phase to another and remain in equilibrium 
all the while. The molecules are distributed between two energy states such that fewer 
per unit volume are in the higher energy state (vapor) and more per unit volume are 
in the lower energy state (liquid). Since Boltzmann’s principle was derived without 
regard for the nature of the energies of the molecules, it applies also to the distribution 
of molecules between the liquid and vapor phases or between the solid and liquid 
phases of species i. However, as we shall see, it can be made to apply to these two 
phases 1) only if the unit volume is taken to be the unit free space volume for the 
molecules in each phase, 2)  only if the enthalpy of transition from liquid to vapor 
phase (or from solid to liquid) is known and 3) only if the pressure-volume work 
from liquid to vapor phase can be assessed. The total pressure-volume work must 
include the work performed when the molecules expand in volume when going from 
the liquid to the vapor phase against a constant external pressure applied to each, 
namely, pz(Va - Vi)  and it must also include the work resulting from a change in 
internal tension in the cohesion between molecules in the two phases. 

When molecules A, and molecules A, are at the same temperature, their average 
kinetic energies and the distribution of their translational velocities in x, y and z are 
identical in the two energy states. Nevertheless, forces acting on molecules A, and 
A, may yield potential energy states which differ. The force field may be external to 
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74 H.  T. HAMMEL 

the molecules or it may be internal between the molecules. In each case, the unit 
volume is a unit of volume available to the centers of mass of the molecules. The 
hard core of molecules A is not included in the unit volume. Thus, if there are nA,L 
molecules in energy state 1 in a unit volume, the total volume occupied by these 
molecules is V, = 1 + nAl  VhrAl. Likewise, in energy state 2, for which there are n,,L 
molecules in a unit free space volume, the total volume occupied by these molecules 
is V, = 1 + nA21/hrA2. Vl also equals nAl times the molar volume of A,, VAl, so that 
a unit volume equals nAl(  VAl - Likewise, V, = nA,VA, and a unit volume also 
equals nAz(VA, - I/hcA2). Thus, the left side of Eq. (2) becomes 

Melting is a physical reaction, a phase change from pure solid A to pure liquid 
A at or above its melting temperature Tz'" at a given pressure. The equilibrium 
distribution of molecules of A between the molar energy states U.,* and U z ,  i.e., the 
solid and liquid phases in the reaction As* H A" at TzC'* ,  becomes 

where nf is the moles of pure liquid A in a unit volume and where n z  is the 
moles of pure solid A in a unit volume. Since a unit volume excludes the hard core 
volume in both cases, Eq. (3) can be written 

where AUS,'+'* = ( U I  - U x ) .  

the energy states of the liquid and vapor according to 
Similarly, when pure liquid A vaporizes at T ,  the moles of A are distributed between 

Likewise, when pure solid A vaporizes at T ,  the moles of A are distributed between 
the energy states of the solid and vapor according to 

Equation of stute of pure species i :  free space volume, external and internal pressures 
and internal tension 

An equation of state for a mole of pure substance i in any phase relates its volume 
to the pressure and temperature applied to it. However, the external pressure, pz*, 
applied to phase z of pure substanct: i is not the only pressure affecting the molar 
volume of substance i. An internal pressure attributable to the Brownian motion of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



EQUATION OF STATE AND BOLTZMANNS LAW 75 

its molecules also affects its volume. In all phases of pure species i, its molecules (or 
atoms) are in thermal, random, translational (also rotational and vibrational) mo- 
tions. All molecules (or atoms) reflected at the boundaries within which they are 
contained change momenta. The momentum change normal to a boundary per unit 
time is an internal force and, per unit area of boundary, an internal pressure, pp', 
which is always positive and depends on the temperature of substance i. Some 
fundamental equation must relate this internal pressure to the temperature and to 
some molar volume of substance i .  I shall posit that: 1) the molar free space volume 
of i in phase a is the appropriate molar volume for this fundamental equation and 
2) the fundamental equation is 

pp'V$ = R T.  (7) 

In the gaseous phase, this outwardly directed internal pressure, p?*, due to the 
translational motion of molecules of i is opposed largely by the walls of the containing 
vessel, namely, the external applied pressure p$.  

In all phases of species i, there is a cohesive force between its molecules (or atoms) 
when they are in close range. In the higher energy and gaseous phase, this cohesion 
diminishes the pressure exerted by the gas molecules of species i against the walls 
containing them. Thus, p$ is slightly less than pg'. Because there is a cohesive force 
between the molecules, there is also a tension in it, 7g*, (a negative pressure) such 
that pf' + zf' = p:'. It is this cohesion and the attendant tension that allows p:* to 
be less than p f * .  The same cohesion between molecules of i also insures that they can 
exist in lower energy and condensed phase (liquid and solid) in which the average 
spacing between molecules is only a few molecular diameters. Therefore, I shall posit 
that this internal pressure of substance i in any phase is related to the external pressure 
as 

(8) pp' + 7p* = p:, 

where 7;' is a tension (negative pressure) in the cohesive force between atoms or 
molecules of i so that zp* allows the pressure applied to i in any phase to be less 
than its internal pressure. If the pressure applied to a condensed phase were zero, 
the internal thermal pressure and the internal tension would be the same magnitude 
but opposite in sign. 

Combining Eqs. (7) and (8), I shall posit that the equation of state for pure substance 
i in phase CI to be 

(p:* - 7p*)VZi = RT 

or 

where V;:i is the molar hard core volume of i unavailable for the motion of the 
centers of mass of the atoms or molecules of i. Equation (9) for the gaseous phase of 
pure substance i has the form of van der Waals' equation for which - t;' = a;'/( Vf*)z 
and Vfi = hg' where uf* and bf are the van der Waals' constants for pure gaseous i. 
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H.T. HAMMEL 16 

The magnitude of af' for each of the gaseous substances i listed on page D-146 
of the CRC Handbook of Chemistry and Physics 53rd Edition or, specifically, the 
value of aP*[VB*(T, p$*)]-'  is a measure of the cohesion between the molecules of 
gaseous substance i when it  is in equilibrium with its pure liquid at T and applied 
pressure pr(T)  = p",(T). The greater the value of af'[Vf*(T, p$*) ] -2 ,  the more the 
molecules of i cohere in the gaseous phase and the extent to which the applied pressure 
is less than the internal pressure is greater. That is, the extent to which 
[pf '(T) - p$ ( T ) ]  is greater than zero is increased as af' increases or as Vf' decreases. 
Cohesion between molecules i in the gaseous phase is less than in the liquid phase 
only because cohesion is a short range interaction between molecules of i so that 
they are seldom near enough to interact and cohere to one another in the gaseous 
phase, i.e. when T < Ti. In a condensed phase, below the critical temperature Ti, 
nearly all molecules cohere to one another. As the temperature increases toward Ti, 
the liquid molecules cohere to one another to a lesser extent and the vapor molecules 
cohere to one another to a greater extent so that at T = Ti the extent of the cohesion 
is the same in both liquid and vapor phases and there is no distinction between the 
two phases. Cohesion between molecules of i in any phase is also related to the energy 
of transition from one phase to another. The greater the cohesion, the higher is the 
energy of transition. When liquid i is in equilibrium with its vapor only, the pressure 
applied to the upper surface of the liquid is the same as the pressure applied to the 
vapor by the walls containing the vapor at the same level, p:*, and is designated the 
vapor pressure of the liquid. In this case, pr  = p:'. For the liquid, Pf' = RT/VYsi so 
that RT/VfJ ,  + T:' = p r  at its upper surface. For the vapor, py* = RT/VFsi so that 
RT/VgSi + ~ f '  = p p  g* . When p r  = p:*, RT/VYsi + T:' = R T / V S i  + ~ f .  For temperature 
T = Ti, the critical temperature for .species i, ~ f '  equals ~ f '  and the liquid and vapor 
phases are no longer distinguishable. At T= Ti, the critical applied pressure is 
p:. = p:: = R 7JVysi + T;*( Ti) = RTi;  VTsi + T?*( T.i) Since rf*( Ti) = TB*( Ti), it follows 
that V:'ri(Ki, pCi) = VFSi(Ti, p J .  

Compressibility relates change of applied pressure to change in tduvne and volume 

External pressure applied to all boundaries of a condensed phase alters the spacing 
between its molecules. Increasing a positive external pressure diminishes the aver- 
age spacing and decreasing a negative applied pressure increases the spacing. 
The relationship between a change in the applied pressure and a change in 
spacing between molecules, i.e. volume, is determined experimentally and is termed 
compressibility of the condensed phase. For a liquid, the compressibility is K' = 
- AV'/V'(ApL)- I .  Compressibility varies with species, temperature and pressure 
applied to the condensed phase. 

There are two pressures acting at the boundaries of pure liquid A:  an external 
pressure compressing the liquid, when this pressure is positive, and an internal 
pressure always distending the liquid. The net effect of these two pressures is 
( p r  - p i )  = T;, the internal tension in the cohesive force between the molecules of 
liquid A. Furthermore, since p x  = RT - Vf;sA, which is temperature dependent, the 
spacing bet ween molecules of liquid A is temperature dependent. Similarly, for pure 
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EQUATION OF STATE AND BOLTZMANN'S LAW 17 

A in solid phase, the pressure affecting the spacing between its molecules is 
( p r  - p;  ) = T;  where pf is the external pressure applied to the solid and p f  is the 
internal pressure due to the thermal motion of molecules A at the boundaries of the 
solid. 

Melting and vaporization of solvent A (water): VysH20 and V ~ s H 2 0  

According to the first law of thermodynamics, Eq. (l), the increase of energy during 
melting one mole of solid A to one mole of liquid A at constant temperature and 
constant external pressure is possible only if an amount of heat SQ is added to the 
system and/or an amount of pressure volume work SWis performed on the system. 
By definition and in accord with the second law of thermodynamics, SQ = TASS;+'* 
where AS:+" = [Sx - S:], the molar entropy of liquid A minus the molar entropy 
of solid A at the same temperature and applied pressure. The amount of pressure 
volume work in melting one mole of solid A is the change from [ p z  - p;] V z  
to [ p :  - pX]Vx, i.e. from T ~ V :  to 7XVf;. Since work is done on the system when the 
volume change is negative, 6W = -{[pf: - p x ] V f ;  - [p:  - p z ] V : }  in melting one 
mole of A. If the externally applied pressure remains constant during melting, i.e. 
p e  - p e  - pe  , and since the molar volume change is [Vx(T:+l*, p r  - p x )  - 
VS* A (T"' A + f*9 pf - p;)] = AV;+'*, the external pressure volume work done on (or by) 
the system due to a change in volume during melting is p~+l 'AVz+'* ,  and depends on 
whether the volume decreases (or increases). Thus, if the external pressure remains 
constant and if the temperature remains Tf+'*,  then during melting the change in 
internal energy is 

I' - s* - S * + f *  

A US* + f*  ( T z  + f*, pf f f* )  = T: + f' AS: + f' - &* + fbA VS* + 1' 
A A 

+ p f ;  VX - ps; Vs;. (10) 

Enthalpy is defined as H = U + pV so that AH = A(U + p V )  and the enthalpy 
change when one mole of solid A melts at constant T and constant applied pressure is 

(1 1) AHS*+f* - AuX+I* + p;'+f*AVS*+f* - f'Vf* + 
A -  A P A  A dV:; 

so that Eq. (4) can be written 

Comparing Eqs (10) and (ll), it is evident that AH:"' = TS'+f*ASS;ff' A at constant 
temperature and external pressure so that AH:+'* is the amount of heat required to 
melt (increase the entropy by AS";+'* and decrease the order of) one mole of solid A 

calorimetry. Equation (12) also determines the distribution of molecules between a 
unit volume of liquid A and a unit volume of solid A, nX/n:, at Tz++'* and pztf*,  
where the unit volume is that available to the motion of the centers of mass of the 
molecules. 

at TS*+f* A and pf'''. This amount of heat can be determined experimentally by 
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78 H. T. HAMMEL 

Evaporating a mole of pure liquid A to a mole of pure vapor at T requires an 
enthalpy change AH:' = H g  (7 ,  p$ - pgk) - H:( T. p: - p ; )  and a volume change 
AJ/;+g* = V g  ( T ,  p!* - pgk) - V f  ( T ,  pf: - p x ) .  At constant T and applied pressure 
p$ = pf:, the ratio of molar free space volume of liquid A to molar free space volume of 
vapor A is, according to Eq. (3, 

The distribution of molecules A between a unit free space volume of vapor A and 
liquid A is also given by Eq. (13). At  the critical temperature and pressure for A, we 
have already deduced that VysA (T:A, pcA) = V g A  (qA, pcA) SO that molecules of A are 
distributed equally between the two phases and the left side of Eq. (13) equals unity. 

Likewise, Eq. (6), the distribution of pure solvent molecules A between its solid 
and gaseous phases can be written 

(14) ~- VYsA 

VFsA 

- [ ~ , c + ~ - ' ! ' - ~ ; * ~ ~ ~ + ~ .  t p<V$ - p i V i ] / R T  - - P  

where 
Eqs (12), (13) and (14) are readily applicable to pure water, since the molar enthalpy 

of melting ice and the molar enthalpies of vaporization of ice and liquid water are 
well known. First, Eq. (13) will be used to calculate the free space volume of liquid 
water at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300 and 374.15"C as well as 33, 
34. 35, 36, 37, 38, 39, 40, 42, 52, 62°F. Next, the free space volume of ice at its triple 
point temperature, O.O098'C, will be calculated from Eq. (14). 

In order to calculate the molar iree space volume of liquid water from Eq. (13), it 
is necessary to assess the molar frez space volume of its vapor, VFsH20, as well as the 
internal tension in the cohesive force between the molecules of water vapor. For these 
terms, let us assume that the a and b terms for water vapor in van der Waals' equation 
of state, namely, [p:' + a$.o/( V&42] [  V$20 - b$:o] = RT,  provide the appropriate 
values when Tis near O'C. bGz0 is interpreted to be a volume occupied by a mole of 
the vapor molecules, i.e. the volume in a mole of gas not available for the motion of 
the centers of mass of the molecules, so that = bc20 = 30.49 cm3/mole and 

For water vapor near O"C, a$?,, = 5.464 liter2atm mol-' or 0.55364 liter2joule 
~ m - ~ r n o l - ~  or 5.536398 x lo5 cm3 joule molK2. a~20/ (V$20)Z has the dimensions of 
a pressure attributed to the attraction between the molecules of water vapor; it lessens 
the external pressure applied by the wall of the containing vessel, so that T $ ~ ~  = 

- U $ , ~ / ( V $ > ~ ) ~ .  Since P " H ' , ~  + = pgE*, then the third term in the numerator of the 
exponential in Eq. (13), equals [p:' + 0 ~ 7 0 / ( V $ ~ 0 ) 2 ] V c . 0 .  Also, the second 
term in the same numerator is --p",[VC,J T ,  p$*--- p$?'?,) - V{io(T, pf: - p&o)] so 
that the second and third terms may be combined to equal +pz*VL,o + a$>o/V$20. 
I have posited that p ~ 2 0 V ~ , H 2 0  = RT,  so that the term for p ~ 2 0 V ~ 2 0  in Eq. (13) becomes 
RTV~20/VysH,0 .  Equation (13) can now be written 

is the molar enthalpy of evaporation from solid to  gaseous A. 

V Y s H 2 0  = V$20 - b$:O. 
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EQUATION OF STATE AND BOLTZMANNS LAW 19 

There is a term for Vf;fsHzO on the left side of Eq. (13a) as well as on the right side. 
All other terms are known from experimental determinations as noted in Table 1. 
By iteration, the value of VysH20 in Eq. (13a) can be determined and is shown in the last 
column of Table 1 for each temperature. Since VhrHzO(T, p$*) = V&o(T, p$*) - 
VysHz0 (T ,  p:*), the molar hard core volume is the difference between the fourth and 
last columns and is shown in the next to last column of Table 1 at each temperature. 
Although it is known that van der Waals' constants a and b vary to some extent 
with temperature, they were assumed to be constants for the calculations of Vf;fsH20 
in Table 1 from 0 to 100°C. Thus, the free space volume for the motion of the centers 
of mass of water molecules in a mole of liquid water, Vl;sHzO (T) ,  increases from 
3.07759 cm3/mole at 0°C to 4.38469 cm3/mole at 100°C. It is greater (by 
1.424714178 x )  at 100°C causing thermal expansion of the liquid water (by 
1.043224326 x )  even though there was a reduction of the hard core volume due to 
an increasing number of high order collisions. Distensibility and thermal expansion 
are related properties of any liquid A. Increasing temperature increases the internal 
pressure (since pxVys, = RT)  against the boundary of the liquid and thereby 
increases the volume of the distensible liquid an amount depending, in part, on its 
distensibility (negative compressibility). 

The molar hard core volume of liquid water diminished by a factor of 
0.964645002 x from 14.94122 cm3mol-' at 0°C to 14.41297 cm3mol-' at 100°C. As 
expected, the hard core volume of liquid water (14.94 cm3mol-' at OOC) is less than 
half its value for its vapor (30.49 cm3mol-'). Many collisions in the liquid are ternary 
and higher order so that there are many fewer exclusion volumes from which the 
center of mass of a molecule is excluded. Likewise, as the temperature increases, the 
proportion of higher order collisions increases so that the hard core volume is 
diminished. 

In Figure 1 the molar hard core volume and the molar free space volume of liquid 
water are plotted as a function of temperature from 0°C to 100°C. The cubic 
regression lines for these are, respectively, 

VcHIo = 14.93960119 - 10.48454364 x T + 82,52599697 x T 2  
- 305.1299425 x T 3  cm3/mole. 

where the correlation coefficient R2 = 0.999950074; and 

Vf;,H20 = 3.007437132 + 10.03634476 x T + 24.92521700 x T2 
+ 54.10119605 x T 3  cm3/mole, 

where R2 = 0.999999666. The sum of these equations is the molar volume of 
liquid water as a function of temperature, namely, 

VL20 = 18.01703825 - 0.448184787 x T + 107.4508272 x TZ 
-251.0261511 x T 3  cm3/mole, 

where R 2  = 0.999971154. As shown in Figure 2, the molar volume of liquid water 
is a minimum at 3.8"C even though its constituent volumes are without minima. The 
molar hard core volume decreases continuously with increasing T and the molar free 
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80 1H.T. HAMMEL 

Table 1 Molar free space volume l'ysH20(7. p:'). molar hard core volume L'icH20(T, p:') and molar volume 
T.  p:') of pure liquid water as a function of temperature. 

R = 8.31441 joule mol-'  K I :  0.0 C = 273.15 K :  M,,, = 18.015 gm mol-I. 

0.0 
0.556 
1.1 I 1  
1.667 

2.778 
3.333 
3.889 
4.444 
5.556 

10.0 
1 1 . 1 1 1  
16.667 
20.0 
30.0 
40.0 
50.0 
60 (1 
70.0 
80.0 
90.0 

100 
100 
200 
3 00 
374.15 
374.15 

7 717 _.--.. 

0.0098 

0.0098 

6.108068 
6.359037 
6.61 8970 
6.888555 
7. I67 103 
7.456683 
7.7559 I6 
8.065490 
8.386097 
9-061 783 

12.26991 5 
13.2 13808 
18.956453 
23.365652 
42.41 5 185 
73.749800 

123.354151 
199.203406 
3 1 1.622468 
473.60 I064 
701.059 19 7 

1013.253930 
1013.253930 

15548.78696 
85926.63598 

221 197.69 
221 197.69 

6 108068 

6.lOXOhX 

371.6596873 
357.7141543 
344.353434'2 
331.5550350 
3 19.28521 5'7 
307.52 14842 
296.2525945 
285 4335602 
275.0643820 
255.5631293 
191.7285790 
178.7'77438 
126.9943 168 
IO4.197869C 
59.3247451 
35.2124695 
21.699923.. 

9.0904621 
6.141657.' 
4.253837: 
3.013922CI 
3.01 3922c 
0.2290779 
0.0390003 
0.0057 109 
0.0057101) 

371 4010201 

13.833068.'' 

371.4010201 

1801881494 
1801818019 
I8 01764528 
1801720819 
1801686714 
1801662032 
1801646600 
1801640249 
1801642824 
1801674119 
1802127510 
18 023 17881 
18 03689465 
18 04823065 
1809454390 
I815708778 
I6 23385268 
1832350796 
1842516939 
18.53826891 
I8 6624877 
1879766607 
1880285143 
2083957396 
2529114724 
57 10920483 
57 10920483 

18 01880286 

I k c  
1964558343 

4510123968 
45076 07860 
45055 1 1  103 
45029 94995 
45004 78887 
4498382130 
4495866022 
4493 1 499 I3 
4491253157 
4486220940 
4467350129 
4462737264 
4438834236 
4424995640 
43822 21801 
4339447961 
42962 54770 
4252222877 
4207771632 
4162481684 
4116353033 
40689 66329 
40689 66329 
1494874305 
2534979023 

0 0  
0 0  

4510123968 

AH:;::' 

5111196659 

14.9412206 
14.9347786 
14.9292458 
14.9229530 
14.91 67394 
14.91 I4360 
14.9053554 
14.899 364 5 
14.8942676 
14.8826176 
14.84 10000 
14.8313880 
14.7847186 
14.7600242 
14.69 19407 
14.6347643 
14.5856147 
14.5421604 
14.5044958 
14.4708 152 
14.4408 143 
14.41 29738 
14.426098 
14.249830 
14.160123 
30.490001 
14.1 

14.941 2030 

,'I' 
hcH$ 

17.2629753 

3,0775943 
3.0834015 
3.0883995 
3.0942552 
3.1001278 
3.105 1843 
3.1 1 1  1 I06 
3.1 170380 
3.1221606 
3.1341236 
3.1802756 
3.1917908 
3.2521761 
3.2882065 
3.4026032 
3.5223234 
3.6482380 
3.781 3476 
3.9206736 
4.0674537 
4.2216645 
4.3846923 
4.376753 
6.589744 

1 I . I  33024 
26.619204 
43.009205 

3.0775998 

L,S* 
JsH:O 

2.3826081 
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Figure 1 Molar hard core volume, i'LH,o(T, pz*), and molar free space volume, VysH1O(T, j f ) ,  of pure 
liquid water are plotted as a function of -Thorn 0°C to 100°C and at its vapor pressure at 7: Data are 
from Table 1 .  In the inset, these functions are redrawn to the same scale as is the molar volume of 
pure liquid water in the inset of Figure 2 from 0 'C to 5'C. 

187 r / 

/ 186 1 

t 
18.2 

/ 
. 0 - 5 10 / 

/ 

I I 1 I I I I I I I J  

0 10 20 30 4 0  50 60 7 0  8 0  90 100 
T *c 

Figure 2 Molar volume, VI2,(T, p:*), of pure liquid water is plotted as a function of T from O'C to 100 C 
at its vapor pressure at 7: Data are from Table 1. In the inset, the scale is the same as in the inset in Figure 1 
from 0 C to 5'C. 
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82 H. T. HAMMEL 

space volume increases continuously with increasing T without inflections in either 
curve from 0°C to 5"C, Figure 1. The inserts of V/1;20 (T) ,  Figure 2, and of VLcH20 (T )  
and VysH20 ( T ) ,  Figure 1, are drawn to the same scale. The cubic regression lines for 
these functions over the range 0°C to 4.44"C are, respectively, 

VrcH20 = 14.941 11984 - 10.90673609 x T - 28.50052560 x T 2  
+ 23452.00230 x T3 cm'/mole, 

where R 2  = 0.999039846; and 

VysH20 = 3.077695120 + 9.67326311 x 

- 25218.48259 x 10 
T + 193.0430145 x T 2  

T 3  cm3/mole, 

where R 2  = 0.999760226. 
The free space volume for a water molecule in a mole of ice can be similarly 

calculated with Eq. (12) and is found to be 2.3826081 cm3/mole at O.O098"C, last 
column, bottom row, Table 1. Thus, the molar hard core volume of ice is 17.2629753 
cm3/mole. 

In order to calculate the molar free space volume of liquid water from Eq. (13), it 
was necessary to assess the molar free space volume of its vapor, V&, as well as the 
internal tension in the cohesive force between the molecules of water vapor. It was 
assumed that the a and b terms for water vapor in van der Waals' equation of state 
provided appropriate values for these terms. Eq. (13) may be evaluated by noting 
that pQo in the third term of the numerator of its exponential equals RT/VTSH1? and 
that AVL?fgg' in the second term equals [V;,, - VC2,]. The molar volumes of liquid 
and vapor of water are given in the steam tables as a function of temperature. 
Equation (13) can be written and evaluated in the form 

where all values except b"H0 and VYsHzO can be obtained from the steam tables as a 
function of 7: Again, assuming that bCZo = 30.49 cm'/mol, the molar free space 
volume, VffsHzO (T ,  p;*), was determined by iteration using Eq. (13b) for T between 
100°C and 374.15'C, the critical temperature of water, Table 1. As before, the molar 
hard core volumes in Table 1 were computed as VLHz0 = Vcz0 - VFSH2,. Computed 
this way. the value of VL.H,o decreases toward 14.1 ~ m ~ m o 1 - l  as T increases toward 
the critical temperature, ZHzo. However, at rH,o the value of V/fi'cH,O was computed 
to be 30.49 cm3/mol. It is obvious that as Tapproaches THJO and as p$* approaches 
pcH:o,  the critical pressure of water, the value of bCl0 must approach and become 
equal to the molar hard core volume of liquid water, that is, 

bG20(TcH20. P ~ H , ~ )  = V L 2 0  (TcH,o, p c H Z o )  = V h c H 2 0 ( T c H 2 0 ,  P C H ~ ~ ) .  

So we must conclude that Vfi.cH,o(~,,,O, prH,o) = 14.1 cm3mol-' rather than the value 
of bEo near 0°C. At the critical teml<eraturk and pressure of water, the first two terms 
in the numerator of the exponential of Eq. (13b) are both zero (c.f. the steam tables) 

I' 
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EQUATION OF STATE AND BOLTZMANNS LAW 83 

so that the remaining terms in the numerator must also sum to zero SO that the right 
side of Eq. (13b) equals unity. That is, 

v g 2 0 ( K H 2 0 ,  PcH,O)  - bg20 ( K H 2 0 y  PcHzO) = V ? s H z O ( z H 2 0 ,  PcHzO). 

I' 
Since Vl;sH,o( T H , o  9 P C H , ~ )  = G20C L , o  ~ c H , o )  - V h c H 2 0 ( T E H 2 0  9 P C H , ~ )  and since 
Vc,o(KHzO, pcH20) = V H 2 0 ( K H 2 0 ,  pcH20), it is essential that b$20 = VKH20 at the critical 
temperature and pressure of water, Table 1. 

I' 

Equations (134 and (13b) justified 

The analysis leading to Eqs (13a) and (13b) and the results given in Table 1 and 
Figure 1 were based on two important statements. 1) The distribution of water 
molecules in a unit volume of liquid and vapor must be treated with reference to the 
molar free space volumes of liquid and vapor in these two energy states and 2) the 
internal tensions in the cohesion between water molecules in both the liquid and 
vapor phases must be included in the derivation of the work done during vaporiza- 
tion. These statements and Eqs (13a) and (13b) are justified if the values of 
and VFcHz0 computed from these equations are reasonable and if the computed values 
of and VrcHzo are absurd when the novel aspects of Eqs (13a) and (13b) are 
ignored. 

At O'C, the molar free space of liquid water is 3.077594341 cm3mol-' and the 
ratio of the moles of water in a unit free space volume of vapor to the moles in a 
unit of free space volume of liquid is 8.280746323 x lo-' awording to the left side of 
Eq. (13a) and the data in Table 1. From data in Table 1, thc value computed for the 
right side of Eq. (13a) is 8.280746331 x These two values differ by less than 
8 x At O"C, the most important terms in the numerator of the exponential in 
Eq. (13a) are the term for the enthalpy of vaporization and the term derived from 
the internal tension in liquid water. The two middle terms have little effect on the 
value of the exponential at 0°C. If the term derived from the tension in liquid water 
were neglected, then the right side of Eq. (13a) would equal 2.373 x which, of 
course, no longer equals the left side which it must. If the unit volumes had included 
the molar hard core volumes of liquid and vapor, then the calculation of the 
distribution of moles of water in the liquid and vapor phases in equilibrium would 
have been ng20 /nf;20 = V;20/Vc20 = 48.4820 x which, of course, can not be 
reconciled with any evaluation of the right side of Eq. (13a). 

At  100°C, the molar free space of liquid water is 4.384692292 cm3mol-' so that 
the value of the left side of Eq. (13a) is 1.456286042 x whereas the right side 
equals 1.456286042 x and these differ by less than 1 x 10-l3. All terms in the 
numerator of the exponential are important for the evaluation of the right side of 
Eq. (13a) at 100°C. Without the last term (the term from tension in liquid water), the 
right side would equal 200.1601836 x lo-* and this would mean that the molar free 
space volume of water was only 0.06026 cm3, i.e. absurdly low. Without the third 
term (the term from tension in the vapor), the right side would equal 1.464934486 x 

Without the second term, the right side would equal 1.457180350 x lop4. All 
of these values differ significantly from the value of the left side. Therefore all terms 
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84 H. T. HAMMEL 

must be included in the evaluation of the right side of Eq. (13a). On the other hand, 
had the unit volumes included the molar hard core volumes of liquid and vapor then 
n$20/nG20 = Vs,o/V$zO = 6.243261077 x at 100°C. which cannot be equated to  
any evaluation of the right side of Eq. (1 3a). At the critical temperature and pressure 
of water, the first two terms in the exponential of Eq. (13b) are zero so that the molar 
hard core volumes of liquid and vapor water are about 14.1 cm3 mol-'. 

CONCLUSIONS 

The Boltzmann energy distribution principle and the equation of state for atoms and 
molecules in any phase are applicable to pure species i only if the hard core volume 
of the atoms or molecules is excluded from their molar volume. Only the free space 
volume available for the random translational motion of the centers of mass of atoms 
or molecules is to be used in these two fundamental relationships. The internal tension 
in the cohesion between atoms or molecules of a single species in any phase also 
depends on the molar free space volume. Thus, the only workable analysis of the 
thermodynamic data pertaining to liquid water and its vapor from 0°C to 100°C 
must be based on unit volumes which exclude the hard core volumes of water in its 
liquid and vapor phases. The analysis must also include the effects of cohesion 
between water molecules, in both liquid and vapor phases, on the pressure volume 
work during vaporization. 

When species i is the solvent A in a solution, the internal pressure exerted by solute 
and solvent against a free boundary of the solution exceeds the internal pressure 
exerted by pure solvent against a free boundary by an amount equal to the osmotic 
pressure of the solvent in the solution, xi, (Hammel'). This lowers the vapor pressure 
of the solvent in  the solution exactly as would increasing the applied tension in pure 
A an amount nk. The extent to which this alters the distribution of molecules between 
the vapor and liquid phases may be determined by modifying the numerator of the 
exponential in Eq. (13) so as to include the effects of the increased tension applied 
to the pure water. The increased tension will have small (but not insignificant) effects 
on the enthalpies of the liquid and the vapor and on the molar volumes of the liquid 
and the vapor. However, the primary effect of the increased tension will be on the 
internal energy of the liquid, i.e. a term -rcaVa must be added to the numerator of Eq. 
(13). Thus, the work resulting from change of applied tension during vaporization 
becomes ( p a  + x6)V:. When the solvent A is water, Eq. (13a) for pure water becomes 

. r l .  

where 
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EQUATION OF STATE AND BOLTZMANNS LAW 85 

the liquid phase, nc20/n[20, i.e. the distribution of molecules between the two phases 
when the applied tension in the pure liquid water was increased by R L , ~ .  This 
distribution is the same for the water in an aqueous solution in which its osmotic 
pressure is &20. The fact that Eq. (13c) yields the distribution of water between its 
vapor and liquid phases when the pressure applied to the pure liquid water is 
decreased to p$(T, p;' - R & ~ )  - R & ~ ,  reinforces the validity of Eq. (13a) which 
accounts for the distribution when the pressure applied to the pure liquid water is 
p:*(T, p;'). Tension in the cohesive force between the molecules of pure liquid water, 
whether altered by the thermal motion of its molecules reflecting from its boundaries 
or caused by an applied negative pressure, effects the internal energy of the liquid 
water. The change in this internal energy during the transition to vapor is an essential 
part of the pressure-volume work of vaporization and it must be included when 
applying the Boltzmann distribution principle to liquid in equilibrium with its vapor. 

Calculations of the molar free space and molar hard core volumes of pure liquid 
water as a function of temperature reveal that L';sH20 increases with increasing 
temperature without an inflection between 0°C and 5°C and that Vfi:H20 decreases 
with increasing temperature without an inflection between 0 and 5°C even though 
the molar volume of water, VLz0, has a minimum at 33°C. At the critical temperature 
and pressure of water, the molar free space and hard core volumes of liquid water 
are identical with these volumes of water vapor. 
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