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INTERNAL PRESSURES, HARD CORE AND FREE
SPACE VOLUMES AND BOLTZMANN'’S RULE

H. T. HAMMEL

Department of Physiology, Medical Science Program,
Meyers Hall, Indiana University School of Medicine, Bloomington,
- Indiana 47405, USA.

( Received 6 March 1989, in final form 14 August 1990)

Two fundamental relationships describing natural phenomena are posited to be functions of the free space
in which atoms and molecules are confined and interact. These relationships are the Boltzmann energy
distribution principle and the equation of state. In both cases the free space is that space available to the
centers of mass of the atoms and molecules as they move randomly in translational motion. The hard
core volume of atoms and molecules is not available for translational motion of their centers of mass and
is excluded from the volume function in both Boltzmann’s principle and the equation of state. Only in
this way is it possible: 1) to apply Boltzmann’s principle to the distribution of atoms or molecules between
the two energy states of two phases in equilibrium; solid-gas, liquid—gas or solid-liquid and 2) to apply
the equation of state to the gas, liquid or solid phase in order to determine the internal pressure exerted
by the translational motion of atoms or molecules and to deduce the internal tension in the cohesion
between atoms or molecules. These relationships are applied to water for the determination of the molar
free space and molar hard core volumes of pure water.

KEY WORDS: Equation of state, Boltzmann law.

INTRODUCTION

Boltzmann’s principle describes the distribution of molecules (or atoms) between two
energy states provided there is a reversible exchange of molecules between the energy
states and provided they are in equilibrium. The molar internal energy, molar
enthalpy and molar entropy of the molecules {(or atoms) may differ, depending on
the phase of the molecules or the external force field applied to them. However, at
constant and uniform temperature, the Gibbs free energy is the same for all molecules
{(or atoms) of pure species i when two of its phases are in equilibrium. Distribution
of molecules (or atoms) between differing energy states due to phase changes in pure
species i will be considered first; and this treatment will serve to introduce the
concepts of internal pressure and tension, free space volume and hard core volume
of pure species i. [ shall posit that the free space volume is required for the Boltzmann
energy distribution principle as well as for calculating the internal pressure and
tension of species i. Then, these concepts and the Boltzmann principle will be applied
to pure water molecules in equilibrium in two energy states: between liquid and
vapor, between ice and vapor and between ice and liquid.
69
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Internal energy of pure species i

In this section and the next, there are restatements of well known concepts expressed
in the notation used by McGlashan'. The molar internal energy of pure species i is
denoted U(T, p?) and is a function of the phase of i as well as a function of the
temperature and external pressure applied to it. « denotes the phase of species i and
the asterisk denotes purity, i.e. only one component. The molar internal energy of
species i changes with change of phase at the same temperature and applied pressure.
For a change from pure solid i to pure liquid i, the change in molar internal energy
at the same T§{"*" (melting temperature of solid i) and applied pressure (pS =
pe = pd )y is AUSTE(TT N pet Ty = UN(TT S, pl) — US(TY ", p¥). For a change
from pure liquid i to pure vapor i at the same T and applied pressure (p) =
Py = Pl AUSTHT, pi o) = US(T, pf) — UINT, pb).

Effects of heat and pressure volume work on internal energy at constant, applied T
and p

During a phase change at constant temperature and constant external pressure, there
is a change of internal energy requiring an amount of heat, +JQ, added to or
removed from the constituents and/or an amount of pressure work, +JW, done on
or by the constituents according to the first law of thermodynamics, that is,

AU = +60 + 6W. (D

In order for the temperature to remain constant during a change of phase, heat
may be added to or removed from the molecules of i when and. as they react
physically in changing phase. Pressure volume work is always done on or by the
constituents as they react physically during a change of phase. Pressure volume work
is performed by the system when there is a volume increase at constant applied
pressure, p,AV. At the same time, any decrease of applied pressure will increase the
pressure volume work performed by the system an amount VAp at constant volume.
Change of pressure (and internal energy) as pure i changes phase may result from a
change in the external pressure applied to it, £Ap,, and it always results from a
change of internal pressure of species i during a phase change. One purpose of this
article is to examine the consequences of the change in internal pressure of pure
species i when it changes phase. But first, the free space volume of species i is required
before its internal pressure and internal tension can be determined in pure i.

Volumes occupied by pure species i

The molecules (or atoms) of a mole of pure species i may be viewed as occupying
three spaces concurrently: its molar volume, its molar hard core volume, and its
molar free space volume. The center of mass of each molecule of species i is excluded
from moving within a hard core space as it collides with other molecules in the same
total space. This excluded space depends on the size, shape and charge distribution
of the molecules which collide. It also depends on the number of molecules {(or atoms)
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involved in each collision and, therefore, it depends on the phase. However, the
excluded space per collision is the same whether the molecule collides with only one
molecule or with many molecules at the same time. For a mean radius of molecule
i, 0;, the excluded space for each of its collisions, v, is the forward half of a
hemisphere of radius 2¢; when it collides with another of the same species, ie.
Upi = 2/31(20;)° (cf. Loeb?). When all collisions are binary, as in a gas at low
temperature, the volume of the excluded space in a mole of species i is Luf;, since
there are L (Avagadro’s constant) molecules of i in one mole. Each of the L molecules
collides with only one other molecule at a time so that there are L exclusions
altogether in a mole of gas. When collisions include ternary and higher order
collisions, as in the liquid phase, then there are many fewer than L exclusions
altogether in a mole. The exclusion space for a collision of a molecule with two or
more molecules at the same time remains about 2/3n(20;)* for pure liquid i. However,
the molar exclusion volume of pure i in liquid phase is much less than Luvl,; by an
amount depending on the proportion of higher order collisions. Increasing tempera-
ture increases the number of collisions per unit time and also increases the proportion
of higher order collisions and, for this reason, reduces the molar hard core volume
of pure liquid i.

The total volume occupied by a molecule of species i is more variable than its hard
core volume and is determined by its random translational motion as it collides with
and is reflected by surrounding atoms or molecules. The total volume occupied by
species i in phase o is V** = nf' V¥ where n? is the moles of species i in phase « and
V¥ is the molar volume of pure i in phase a. Within the total volume, V¥, there is
the total hard core volume, V., not available for the motion of the center of mass
of the molecules i. There is a third volume associated with these molecules. It is the
volume available for the random translational motion of the center of mass of its
molecules and is denoted V7, for the total free space volume. Thus, the total volume
of the pure substance i is the sum of the total hard core and free space volumes,
V= Vi + V%, where Vi, = nf'Vi,; and V%, = nf'V%,; and where V§; is the molar
hard core volume of species i and V%, is its molar free space volume. It should be
noted that V%, is much more variable than V%, with respect to temperature and
pressure applied to substance i.

The volume of the molar free space available to the centers of mass of species i is
an important volume conceptually. It is the principal volume that is compressible in
the gaseous, liquid, as well as in the solid phase of species i. This volume varies as
temperature and pressure applied to species i vary and as the forces between
molecules of species i are affected by their order at a given T and p, in phase «. Thus,
VE(T, p% is variable in any phase o largely (but not exclusively) because V%; is
variable and depends on T and pZ and on the internal energy and the extent the
molecules of species i are ordered at a given T, pi. As we shall see, the volume of
the molar free space available to the centers of mass of species i is the volume into
which molecules of species 1 are distributed in each of two energy states when they
are in equilibrium. It is also the volume to be used in the equation of state of species
i, that is, the equation which relates pressure, volume and temperature for species i
in any phase.
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Boltzmann energy distribution principle applied to physical reactions

A fundamental relationship affecting the atoms or molecules of a substance in two
or more energy states in equilibrium is the Boltzmann distribution principle. This
statistical principle governs the distribution of atoms or molecules between an initial
molar energy state, U,, before and a final molar energy state, Uy, after a chemical
or a physical reaction. The principle assumes the reaction is reversible, proceeds until
equilibrium is established between atoms or molecules in the two energy states and
provided that quantum mechanical effects are not important, that is, (U, = U)»RT
or (U, — U;) < RT. Boltzmann's principle was derived from the theory of probability
applied to an assemblage of N similar molecules in a gaseous phase. The energies of
the molecules may differ in amount and kind. However, if there are N, each with an
amount and form of energy ¢, then the total number of molecules would be N = I;N;
and the total energy would be Q == X;N;¢;. Using the principles of statistical mech-
anics, Glasstone® shows that the number of molecules N; possessing the energy
g at any absolute temperature T is

Ni = Ce;ﬂi"kT,

where C is a constant and k is Boltzmann's constant. The principle makes no
restrictions as to the nature of the energies obtaining to the molecules; their energies
might be kinetic energy of translation or rotation or vibration or their potential
energy might vary in a non-uniform force field applied to them. The principle is often
applied to gases subject to the gravitational field of the earth and is thereby called
the law of the atmosphere as it describes the distribution of gases of the atmosphere
as a function of altitude, assuming uniform temperature throughout the atmosphere.

Perrin* applied Boltzmann's principle to the distribution of dense colloidal
particles of gamboge and mastic. From his observations of their distribution in liquid
water in the earth’s gravity field, he was able to explain Brownian motion and to
establish the reahity of atoms and molecules. Moreover, he obtained a good approxi-
mation of Avogadro’s constant from these observations.

Feynman® notes "It turns out that there are many, many phenomena in nature which
are characterized by having to borrow an energy from somewhere, and in which the
central feature of the temperature variation is e to the minus energy over kT.” Feynman
considers that an evaporating liquid is one of the phenomena to be studied, albeit
relatively complicated. He states further ““Now we use the general principle that the
number of atoms per unit volume in two different regions is ny/n, = e (F:EVKT >
Feynman supposes “that there is a force of attraction berween the molecules to hold
them together in the liquid. Otherwise we cannot understand why it condenses.”
Furthermore, he supposes ‘‘that there is an energy of binding of the molecules in the
liquid which is lost when thev go into the vapor. That is—in order to take a single
molecule out of the liquid into the vapor, a certain amount of work W has to be done.
There is a certain difference, W, in the energy of a molecule in the liquid from what it
would have if it were in the vapor, because we have to pull it away from the other
molecules which attract it.”" Feynman then uses the general principle stated by
Boltzmann: “So the number n per unit volume in the vapor, divided by the number
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1/V, per unit volume in the liquid, is equal to nV, = e” ", because that is the general
rule.”” Feynman gives no examples to illustrate the value of W for any liquid.
Nevertheless, there is no reason to disallow the application of Boltzmann’s general
principle to the liquid phase of water or to its equilibrium with its vapor.

When atoms or molecules A are involved in a physical reaction between two energy
states such that atoms or molecules A, in energy state 1 are in equilibrium with
atoms or molecules A, in energy state 2, then n,; moles of A, in a unit volume
available to the centers of mass of atoms or molecules A; and n,, moles of A, in a
unit volume available to the centers of mass of atoms or molecules A, are distributed
according to Boltzmann statistics, namely,

Nas (Usse
A =e (Uaz UA))/RT’ (2)
Nay

where U,, and U,, are the molar energies in states ! and 2, respectively, and
where R = kL, the product of Boltzmann constant and Avogadro constant. Equation
(2) is rigorous only if (U,, — Us,) » RT or (U,, — Uysy) < RT.

Maxwell’s principle was derived for the distribution of velocities of molecules in a
gas and his principle may also be derived from Boltzmann’s principle. The distribu-
tion of velocities of the molecules in the liquid and vapor phases of the same species
are identical at the same temperature. It follows that Boltzmann’s principle as well
as Maxwell’s principle apply to the distribution of molecules of species i in any phase
when these molecules, which for any reason differ in energy, are in equilibrium and
can reversibly change from one energy state to another. For example, the energy of
molecules in the vapor phase is higher than the energy of molecules of the same
species in its liquid phase at the same T. Likewise, the molecules in the liquid phase
have higher energy than those in the solid phase at the same T. Nevertheless, the
molecules may reversibly pass from one phase to another and remain in equilibrium
all the while. The molecules are distributed between two energy states such that fewer
per unit volume are in the higher energy state (vapor) and more per unit volume are
in the lower energy state (liquid). Since Boltzmann’s principle was derived without
regard for the nature of the energies of the molecules, it applies also to the distribution
of molecules between the liquid and vapor phases or between the solid and liquid
phases of species i. However, as we shall see, it can be made to apply to these two
phases 1) only if the unit volume is taken to be the unit free space volume for the
molecules in each phase, 2) only if the enthalpy of transition from liquid to vapor
phase (or from solid to liquid) is known and 3) only if the pressure-volume work
from liquid to vapor phase can be assessed. The total pressure-volume work must
mclude the work performed when the molecules expand in volume when going from
the liquid to the vapor phase against a constant external pressure applied to each,
namely, piV¢ — V) and it must also include the work resulting from a change in
internal tension in the cohesion between molecules in the two phases.

When molecules A, and molecules A, are at the same temperature, their average
kinetic energies and the distribution of their translational velocities in x, y and z are
identical in the two energy states. Nevertheless, forces acting on molecules A, and
A, may yield potential energy states which differ. The force field may be external to



08:28 28 January 2011

Downl oaded At:

74 H. T. HAMMEL

the molecules or it may be internal between the molecules. In each case, the unit
volume is a unit of volume available to the centers of mass of the molecules. The
hard core of molecules A is not included in the unit volume. Thus, if there are n,,L
molecules in energy state 1 in a unit volume, the total volume occupied by these
molecules is V; = 1 + n,, Vi.a:- Likewise, in energy state 2, for which there are n,,L
molecules in a unit free space volume, the total volume occupied by these molecules
is V; =1+ ny; V4, V, also equals n,, times the molar volume of A, V,,, so that
a untt volume equals n,,(Vy; — V,..;)- Likewise, V, = n,,V,, and a unit volume also
equals n,,(Vy, — Viaz) Thus, the left side of Eq. (2) becomes

a2 _ (Vs
(Va2

thAl) - stAl
- V;chZ) stAZ

Nay
Melting is a physical reaction, a phase change from pure solid A to pure liquid

A at or above its melting temperature T35 ' at a given pressure. The equilibrium
distribution of molecules of A between the molar energy states U% and UY, ie., the

solid and liquid phases in the reaction A%« A" at T *", becomes
nﬂ( S U RT
—L = e AT TAEIA (3)
nS
A

where nl is the moles of pure liquid A in a unit volume and where nS, is the
moles of pure solid A in a unit volume. Since a unit volume excludes the hard core
volume in both cases, Eq. (3) can be written

Na V]sA - e‘AUf\.*"/RT‘:"' (4)
o V )
LI JsA

where AUS " = (UL — U3).
Similarly, when pure liquid A vaporizes at T, the moles of A are distributed between
the energy states of the liquid and vapor according to

g. 4 . -
== L,jf" g AUATTIRT, (5)
my ¥ TsA
Likewise, when pure solid A vaporizes at T, the moles of A are distributed between
the energy states of the solid and vapor according to
g‘
nA _ fsA e‘AU::“'./’RT‘ (6)
ni v IsA

Equation of state of pure species i: free space volume, external and internal pressures
and internal tension

An equation of state for a mole of pure substance i in any phase relates its volume
to the pressure and temperature applied to it. However, the external pressure, Y,
applied to phase a of pure substance i is not the only pressure affecting the molar
volume of substance i. An internal pressure attributable to the Brownian motion of



08:28 28 January 2011

Downl oaded At:

EQUATION OF STATE AND BOLTZMANN'S LAW 75

its molecules also affects its volume. In all phases of pure species i, its molecules (or
atoms) are in thermal, random, translational (also rotational and vibrational) mo-
tions. All molecules (or atoms) reflected at the boundaries within which they are
contained change momenta. The momentum change normal to a boundary per unit
time is an internal force and, per unit area of boundary, an internal pressure, p{",
which is always positive and depends on the temperature of substance i. Some
fundamental equation must relate this internal pressure to the temperature and to
some molar volume of substance i. I shall posit that: 1) the molar free space volume
of i in phase a is the appropriate molar volume for this fundamental equation and
2) the fundamental equation is

pi'Vis=RT. ™

In the gaseous phase, this outwardly directed internal pressure, pf", due to the
translational motion of molecules of i is opposed largely by the walls of the containing
vessel, namely, the external applied pressure p?’.

In all phases of species i, there is a cohesive force between its molecules (or atoms)
when they are in close range. In the higher energy and gaseous phase, this cohesion
diminishes the pressure exerted by the gas molecules of species i against the walls
containing them. Thus, p?" is slightly less than pf". Because there is a cohesive force
between the molecules, there is also a tension in it, ¥", (a negative pressure) such
that pf* + «f" = pZ’. It is this cohesion and the attendant tension that allows p?" to
be less than p{". The same cohesion between molecules of i also insures that they can
exist in lower energy and condensed phase (liquid and solid) in which the average
spacing between molecules is only a few molecular diameters. Therefore, I shall posit
that this internal pressure of substance i in any phase is related to the external pressure
as

P+t =pf, (8)

where ¥ is a tension (negative pressure) in the cohesive force between atoms or
molecules of i so that " allows the pressure applied to i in any phase to be less
than its internal pressure. If the pressure applied to a condensed phase were zero,
the internal thermal pressure and the internal tension would be the same magnitude
but opposite in sign.

Combining Eqgs. (7) and (8), I shalil posit that the equation of state for pure substance
i in phase « to be

(P8 — T =RT
or
(P2 ~ WV —~ Vie) = RT, 9)
where Vi, is the molar hard core volume of i unavailable for the motion of the
centers of mass of the atoms or molecules of i. Equation (9) for the gaseous phase of

pure substance i has the form of van der Waals’ equation for which — 1" = af" (V?)?
and V{; = b where af" and bf" are the van der Waals’ constants for pure gaseous i.
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The magnitude of af" for each of the gaseous substances i listed on page D-146
of the CRC Handbook of Chemistry and Physics 53rd Edition or, specifically, the
value of af"[V{(T, p¥')] ? is a measure of the cohesion between the molecules of
gaseous substance i when it is in equilibrium with its pure liquid at T and applied
pressure po(T) = p?(T). The greater the value of af [V (T, p&)] 2, the more the
molecules of i cohere in the gaseous phase and the extent to which the applied pressure
is less than the internal pressure is greater. That is, the extent to which
[p{(T) — p7 (T)] is greater than zero is increased as af" increases or as V¢ decreases.
Cohesion between molecules i in the gaseous phase is less than in the liquid phase
only because cohesion is a short range interaction between molecules of i so that
they are seldom near enough to interact and cohere to one another in the gaseous
phase, i.e. when T < T;. In a condensed phase, below the critical temperature T;,
nearly all molecules cohcre to one another. As the temperature increases toward T,
the liquid molecules cohere to one another to a lesser extent and the vapor molecules
cohere to one another to a greater extent so that at T = T the extent of the cohesion
is the same in both hquid and vapor phases and there is no distinction between the
two phases. Cohesion between molecules of i in any phase is also related to the energy
of transition from one phase to another. The greater the cohesion, the higher is the
energy of transition. When liquid i is in equilibrium with its vapor only, the pressure
applied to the upper surface of the liquid is the same as the pressure applied to the
vapor by the walls containing the vapor at the same level, p?’, and is designated the
vapor pressure of the liquid. In this case, p. = p?". For the liquid pr= RT/V’;Si 0
that RT/V'; + 1" = p at its upper surface. For the vapor, p{" = RT/V¥, so that
RT/V“' 1" = p?. When pL = p?, RT/VfSI + 1= RT/st, + 1f". For temperature
T = T, the critical temperature for species i, 7/’ equals ¥" and the liquid and vapor
phases are no longer distinguishable. At T= T, the critical applied pressure is
pho=p% = ,/st, + (T3 = RTy' V%, + (T, Since 1{(T,) = 1{(T,), it follows
that V SI( cis pcl Vjsn( ci> pu

Compressibility relates change of applied pressure to change in volume and volume

External pressure applied to all boundaries of a condensed phase alters the spacing
between its molecules. Increasing a positive external pressure diminishes the aver-
age spacing and decreasing a negative applied pressure increases the spacing.
The relationship between a change in the applied pressure and a change in
spacing between molecules, i.e. volume, is determined experimentally and is termed
compressibility of the condensed phase. For a liquid, the compressibility is x' =
—AVYVH(Ap) !. Compressibility varies with species, temperature and pressure
apphed to the condensed phase.

There are two pressures acting at the boundaries of pure liquid A: an external
pressure compressing the liquid, when this pressure is positive, and an internal
pressure always distending the liquid. The net effect of these two pressures is
(pt — p') = 1, the internal tension in the cohesive force between the molecules of
liquid A. Furthermore, since pi = RT + V'f'sA, which is temperature dependent, the
spacing between molecules of liquid A is temperature dependent. Similarly, for pure



08:28 28 January 2011

Downl oaded At:

EQUATION OF STATE AND BOLTZMANN’S LAW 71

A in solid phase, the pressure affecting the spacing between its molecules is
(p5 — pis) = v where pS' is the external pressure applied to the solid and py is the
internal pressure due to the thermal motion of molecules A at the boundaries of the
solid.

Melting and vaporization of solvent A (water): Vg o and Vi o

According to the first law of thermodynamics, Eq. (1), the increase of energy during
melting one mole of solid A to one mole of liquid A at constant temperature and
constant external pressure is poss:ble only if an amount of heat §Q is added to the
system and/or an amount of pressure volume work éWis performed on the system.

By definition and in accord with the second law of thermodynamics, 6Q = TASS ™"
where ASS *" = [Sh — $%], the molar entropy of liquid A minus the molar entropy
of solid A at the same temperature and applied pressure. The amount of pressure
volume work in melting one mole of solid A is the change from [pS — pi]V%
to [pY — phJVh, ie. from V4 to T4 VY. Since work is done on the system when the
volume change is negative, W = —{[pL — ph]Vi — [pS — pi]V4} in melting one
mole of A. If the externally applied pressure remains constant during melting, i.e.
ph=ps = pz’“, and since the molar volume change is [VA(TS* Y, pb — ph) —

VS (TS, ps — pS)] = AVS 'Y, the external pressure volume work done on (or by)
the system due to a change in volume during melting is pS' *"AV% *", and depends on
whether the volume decreases (or increases). Thus, if the external pressure remains
constant and if the temperature remains T% *”, then during melting the change in
internal energy is

AUs*+ l*(Ts‘+l* ps*+l*) Ts*+l*ASs*+l"‘ s‘+l*A Vs*+l"‘
+ phVE — PV, (10)

Enthalpy is defined as H = U + pV so that AH = A(U + pV) and the enthalpy
change when one mole of solid A melts at constant T and constant applied pressure is

AHS ™ = AUST™ + g AV — iV + pRVE (11)
so that Eq. (4) can be written
stA CIAHS T ATy et 54
= ¢ [AH, P BYAT +paVA— PAVAVRT, (12)
I‘
stA

Comparing Eqgs (10) and (11), it is evident that AHX """ = TS *"ASS*" at constant
temperature and external pressure so that AH% *" is the amount of heat required to
melt (increase the entropy by ASS*" and decrease the order of) one mole of solid A
at T5*" and pS*". This amount of heat can be determined experimentally by
calorimetry. Equation (12) also determines the distribution of molecules between a
unit volume of liquid A and a unit volume of solid A, ni/n%, at T5*" and p$*",
where the unit volume is that available to the motion of the centers of mass of the
molecules.
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Evaporating a mole of pure liquid A to a mole of pure vapor at T requires an
enthalpy change AH*%" = H{ (T, p’ — p&) — HA(T. p&' — p) and a volume change
AVETT =V (T, p¥ — p%) — Vi (T, p&' — pY). At constant T and applied pressure
p¥ = pt, the ratio of molar free space volume of liquid A to molar free space volume of
vapor A is, according to Eq. (5),

st'\ o THL T =gl gV = pUVIVRT

(13)

stA

The distribution of molecules A between a unit free space volume of vapor A and

liquid A is also given by Eq. (13). At the critical temperature and pressure for A, we

have already deduced that Vi, (T s, p.a) = V%A (T.a, Pea) so that molecules of A are
distributed equally between the two phases and the left side of Eq. (13) equals unity.

Likewise, Eq. (6), the distribution of pure solvent molecules A between its solid
and gaseous phases can be written

VfSA o~ (AHN T = pl AV T+ VL - pIVIURT ’ (14)
stA
where AHS, " is the molar enthalpy of evaporation from solid to gaseous A.

Egs (12), (13) and (14) are readily applicable to pure water, since the molar enthalpy
of melting ice and the molar enthalpies of vaporization of ice and liquid water are
well known. First, Eq. (13) will be used to calculate the free space volume of liquid
water at 0, 10, 20, 30, 40, 50, 60, 7C, 80, 90, 100, 200, 300 and 374.15°C as well as 33,
34, 35, 36, 37, 38, 39, 40, 42, 52, 62°F. Next, the free space volume of ice at its triple
point temperature, 0.0098°C, will be calculated from Eq. (14).

In order to calculate the molar free space volume of liquid water from Eq. (13}, it
is necessary to assess the molar free space volume of its vapor, V¥ o, as well as the
internal tension in the cohesive force between the molecules of water vapor. For these
terms, let us assume that the a and b terms for water vapor in van der Waals’ equation
of state, namely, [p? + ali.o/(Vi.o) V.o — P40l = RT, provide the appropriate
values when Tis near 0°C. .b,q;zo is interpreted to be a volume occupied by a mole of
the vapor molecules, i.e. the volume in a mole of gas not available for the motion of
the centers of mass of the molecules, so that Vi, o = bfi.o = 3049 cm®/mole and
ng‘ngo = Vi’;:o - bgl‘IO'

For water vapor near 0°C, af;, = 5.464 liter’atm mol~* or 0.55364 liter’joule
cm ~*mol 2 or 5.536398 x 10° cm’® joule mol™?. afj o/(V{i o)* has the dimensions of
a pressure attributed to the attraction between the molecules of water vapor; it lessens
the external pressure applied by the wall of the containing vessel, so that r,g_,*zo =

—afy o/(V; 0)*. Since pH‘O + tf.0 = pZ. then the third term in the numerator of the
cxponentlal in Eq. (13), p&, oVh.o, cquals [pg + aH Lol (Vo) 1IVio Also the second
term in the same numerator is —p? [VE (T, p¥ — pi. 0 — VH O(T Pt — phio)l so
that the second and third terms may be combmed to equal +plVho + afio/Viro.
I have posited that pi oV a0 = RT, so that the term for pj; oV} o in Eq. (13) becomes
RTVio/V§m,0- Equation (13) can now be written

p e .
CfsHO g Ao + Py H:()+"|I|:() V{i:()_ RTVH,0,/Vin,0l RT (133)

g* byt
VH:O bn;o
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There is a term for Vi o on the left side of Eq. (13a) as well as on the right side.
All other terms are known from experimental determinations as noted in Table 1.
By iteration, the value of V’}sto in Eq. (13a) can be determined and is shown in the last
column of Table 1 for each temperature. Since Vi o(T, p¥) = Vio(T, p2) —
Vo (T, p%), the molar hard core volume is the difference between the fourth and
last columns and is shown in the next to last column of Table 1 at each temperature.
Although it is known that van der Waals’ constants a and b vary to some extent
with temperature, they were assumed to be constants for the calculations of V{4
in Table 1 from 0 to 100°C. Thus, the free space volume for the motion of the centers
of mass of water molecules in a mole of liquid water, V’;sto (T), increases from
307759 cm®/mole at 0°C to 4.38469 cm?/mole at 100°C. It is greater (by
1424714178 x) at 100°C causing thermal expansion of the liquid water (by
1.043224326 x ) even though there was a reduction of the hard core volume due to
an increasing number of high order collisions. Distensibility and thermal expansion
are related properties of any liquid A. Increasing temperature increases the internal
pressure (since phV%, = RT) against the boundary of the liquid and thereby
increases the volume of the distensible liquid an amount depending, in part, on its
distensibility (negative compressibility).

The molar hard core volume of liquid water diminished by a factor of
0.964645002 x from 14.94122 cm®mol ! at 0°C to 14.41297 cm3mol ™! at 100°C. As
expected, the hard core volume of liquid water (14.94 cm®mol ~! at 0°C) is less than
half its value for its vapor (30.49 cm’mol ~ ). Many collisions in the liquid are ternary
and higher order so that there are many fewer exclusion volumes from which the
center of mass of a molecule is excluded. Likewise, as the temperature increases, the
proportion of higher order collisions increases so that the hard core volume is
diminished.

In Figure 1 the molar hard core volume and the molar free space volume of liquid
water are plotted as a function of temperature from 0°C to 100°C. The cubic
regression lines for these are, respectively,

VZHEO = 14.93960119 — 10.48454364 x 1073 T + 82.52599697 x 10~¢ T2
— 305.1299425 x 10~° T* cm?®/mole.

where the correlation coefficient R? = 0.999950074; and
Vo = 3.007437132 + 10.03634476 x 1073 T + 2492521700 x 107° T2
+ 54.10119605 x 1077 T3 cm?/mole,

where R? = 0.999999666. The sum of these equations is the molar volume of
liquid water as a function of temperature, namely,
Vio = 18.01703825 — 0.448184787 x 107> T + 107.4508272 x 1076 T*
—251.0261511 x 107° T3 cm?/mole,

where R? = 0.999971154. As shown in Figure 2, the molar volume of liquid water
is a minimum at 3.8°C even though its constituent volumes are without minima. The
molar hard core volume decreases continuously with increasing T and the molar free
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Table 1  Molar free space volume ¥ (T p7), molar hard core volume Vi, (T, p?') and molar volume
L"};:O( T. p?¥’) of pure liquid water as a function of temperature.

R = 831441 joule mol ™' ‘K711 0.0°C = 273.15'K: My, = 18.015 gm mol ™"

T 4 ""f;;o H;;o AHLT VL‘(H;O Vlf‘suao
C Joule cm?® nrol ! em® mol™'  joule mol™'  emP mol™'  cm® mol ™!
om0} 107*
0.0 6.108068 371.6596873  18.01881494  45101.23968  14.9412206 30775943
0.556 6.359037 357.7141543  18.01818019 45076.07860 14.9347786 3.0834015
1.111 6.618970 344.3534349  18.01764528 45055.11103  14.9292458 3.0883995
1.667 6.888555 331.5550350  18.01720819  45029.94995 14.9229530 3.0942552
2,222 7.167103 319.2852157  18.01686714  45004.78887 149167394 3.1001278
2.778 7456683 307.5214842  18.01662032 44983.82130 14.9114360 3.1051843
3333 7.755916 206.2525943  18.01646600 44958.66022  14.9053554 31111106
3.889 8.065490 2854335602 18.01640249 4493349913  14.8993645 3.1170380
4.444 8.386097 275.06438200 18.01642824  44912.53157 14.8942676 3.1221606
5.556 9-061783 255.5631293  18.01674119  44862.20940 14.8826176 3.1341236
10.0 12.269915 1917285790  18.02127510 44673.50129  14.8410000 31802756
11111 13.213808 178.7277438  18.02317881 44627.37264 14.8313880 3.1917908
16.667 18.956453 1269943168  18.03689465 4438834236 14.7847186 3.2521761
200 23365652 104.197869%  18.04823065 4424995640 14.7600242 3.2882065
30.0 42415185 $9.3247451  18.09454390 43822.21801 14.6919407 3.4026032
40.0 73.749800 35.2124695  18.15708778  43394.47961  14.6347643 3.5223234
50.0 123.354151 21.6999235 1823385268  42962.54770  14.5856147 3.6482380
60.0 199.203406 13.833068%  18.32350796 4252222877  14.5421604 37813476
70.0 311.622468 9.090462¢  18.42516939  42077.71632  14.5044958 3.9206736
80.0 473.601064 6.141657¢ 1853826891 41624.81684 14.4708152 4.0674537
90.0 701.059197 42538372 18.6624877 4116353033 14.4408143 42216645
100 1013.253930 30139220 18.79766607 40689.66329  14.4129738 4.3846923
100 1013.253930 3.013922C  18.80285143  40689.66329  14.426098 4.376753
200 15548.78696 0.2290779  20.83957396 34948.74305  14.249830 6.589744
300 85926.63598 0.0390003 2529314724  25349.79023  (4.160123 11.133024
37415 221197.69 0.0057109  57.10920483 0.0 30.490001 26.619204
374.15 221197.69 0.0057109  57.10920483 0.0 14.1 43.009205
0.0098 6.108068 371.4010201 18.01880286  45101.23968  14.9412030 3.0775998
"';1‘30 AH ;{';?)4 VZ:"H:O V,stH:o
0.0098 6.108068 371.4010201 19.64558343  51111.96659 17.2629753 2.3826081

Data for p? (vapor pressure of water at T1 Viol T)o AH{ (T and for Viho(T = 100 C) were taken from the CRC
Handbook of Chemistry and Phyvsics 33rd Editior. 1972 1973 pp. E12- E17. Factors converting from British to metric
units were 1 psi = 68947.6 x 107 joule em ™ 1 f1* 1b7' = 1124.639717 em® mol "' and | BTU Ib™' = 41.93513685
joule mol ™",

l';;zO(T < 100 C. p?'y = 180151 p:',_,(,( T1 almny*“:ﬂ(Tl[l,013254 — 10p7(T)}
where

phoof T, Latm) kgm * = [999.83952 + 16.945176T — 7.9870401 = 107372 — 46170461 x 107°T*
+ 10256302 x 1D YT — 280.54253 x 107" T T [ + 16.879850 x 107 T].

and

10° k{0l T bar ' = [50.88496 + 0.6153813T + 1459187 = 107 *T? + 2008438 x 10 °T*
— 65847727 « 107 "T* + 304110 x 10712 TS [1 + 19.67348 x 107 T].

The tatter two equations are from Kell”.
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Figure 1 Molar hard core volume, Vo, (T, p?), and molar free space volume, Vg (T, p?), of pure
liquid water are plotted as a function of T from 0°C to 100°C and at its vapor pressure at T. Data are
from Table 1. In the inset, these functions are redrawn to the same scale as is the molar volume of
pure liquid water in the inset of Figure 2 from 0°C to 5°C.
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Figure 2 Molar volume, VZ:O(T, P9, of pure liquid water is plotted as a function of T from 0°C to 100°C
atits vapor pressure at T. Data are from Table 1. In the inset, the scale is the same as in the inset in Figure 1
from 0°C to 5°C.
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space volume increases continuously with increasing T without inflections in either
curve from 0°C to 5°C, Figure 1. The inserts of Vi o (T), Figure 2, and of Vien,o (T)
and V’f's,_lzo (T), Figure 1, are drawn to the same scale. The cubic regression lines for
these functions over the range 0°C to 4.44°C are, respectively,

Vﬁ,'cH:o = 1494111984 — 10.90673609 x 1073 T — 28.50052560 x 1076 T2
+ 23452.00230 x 10~ ° T? cm®/mole,

where R? = 0.999039846; and

VI;SH:O = 3.077695120 + 9.67326311 x 1073 T + 193.0430145 x 1076 T2
— 25218.48259 x 10 ® T? cm?3/mole,

where R? = 0.999760226.

The free space volume for a water molecule in a mole of ice can be similarly
calculated with Eq. (12) and is found to be 2.3826081 cm?/mole at 0.0098°C, last
column, bottom row, Table 1. Thus, the molar hard core volume of ice is 17.2629753
cm?/mole.

In order to calculate the molar free space volume of liquid water from Eq. (13), it
was necessary to assess the molar free space volume of its vapor, Vﬂ‘sto, as well as the
internal tension in the cohesive force between the molecules of water vapor. It was
assumed that the a and b terms for water vapor in van der Waals’ equation of state
provided appropriate values for these terms. Eq. (13) may be evaluated by noting
that p§j o in the third term of the numerator of its exponential equals RT/V %y, and
that AV 7 in the second term equals [Vi,o — Vii,0]. The molar volumes of liquid
and vapor of water are given in the steam tables as a function of temperature.
Equation (13) can be written and evaluated in the form

S
14 SsH-O

ear e N . . . . .
— 2T o e_[AHHI(; -p! Vl'izo’VH:o]*RTV'ﬁzo/(V"ilazo‘bzi:o)*RTV/H:()/V/I\HJO]/RT, (13b)
Vo — blio

where all values except bfj o and V¥4 o can be obtained from the steam tables as a
function of T. Again, assuming that b‘;’;:o = 30.49 cm?3/mol, the molar free space
volume, V’,'Sﬂzo (T, p?), was determined by iteration using Eq. (13b) for T between
100°C and 374.15°C, the critical temperature of water, Table 1. As before, the molar
hard core volumes in Table 1 were computed as Viy,o = Vit,o — VYm,o. Computed
this way, the value of Vi, o decreases toward 14.1 cm3mol ! as T increases toward
the critical temperature, 'Iino. However, at Ty, the value of Vﬂ,’d_,zo was computed
to be 30.49 cm?®/mol. It is obvious that as T approaches T,y o and as pg° approaches
Peno- the critical pressure of water, the value of bf{,'zo must approach and become
equal to the molar hard core volume of liquid water, that is,

- * I‘
bly-lzo(TcH:O‘ Penso) = Viao (Lo, ch:O) = Viensol T 4,0, Penyo)-

So we must conclude that Vi o Ty 00 P o) = 14.1 cm®mol ™! rather than the value
of bf; o near 0°C. At the critical temperature and pressure of water, the first two terms
in the numerator of the exponential of Eq. (13b) are both zero (c.f. the steam tables)
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so that the remaining terms in the numerator must also sum to zero so that the right
side of Eq. (13b) equals unity. That is,

Vlg;ZO(T;H307 ch;O) - bfl*zo (EHZO’ ch;O) = Vl;sHZO(’I:‘HZO’ chZO)'

Since V’f*sHZO( Thos Petio) = Vazo( Tyi00 Pertro) — VL:HZO(‘;HgO’ 5‘”20) and §ipce
Vi ol Ta,00 Petyo) = Vol Tos Penjoh it is essential that bff o = Vi,o at the critical
temperature and pressure of water, Table 1.

Equations (13a) and (13b) justified

The analysis leading to Egs (13a) and (13b) and the results given in Table 1 and
Figure 1 were based on two important statements. 1) The distribution of water
molecules in a unit volume of liquid and vapor must be treated with reference to the
molar free space volumes of liquid and vapor in these two energy states and 2) the
internal tensions in the cohesion between water molecules in both the liquid and
vapor phases must be included in the derivation of the work done during vaporiza-
tion. These statements and Eqs (13a) and (13b) are justified if the values of V’,‘sto
and Vi o computed from these equations are reasonable and if the computed values
of V.0 and Vo are absurd when the novel aspects of Eqs (13a) and (13b) are
ignored.

At 0°C, the molar free space of liquid water is 3.077594341 cm®mol~! and the
ratio of the moles of water in a unit free space volume of vapor to the moles in a
unit of free space volume of liquid is 8.280746323 x 10~ 7 arcording to the left side of
Eq. (13a) and the data in Table 1. From data in Table 1, the value computed for the
right side of Eq. (13a) is 8.280746331 x 10~ 7. These two values differ by less than
8 x 107 1% At 0°C, the most important terms in the numerator of the exponential in
Eq. (13a) are the term for the enthalpy of vaporization and the term derived from
the internal tension in liquid water. The two middle terms have little effect on the
value of the exponential at 0°C. If the term derived from the tension in liquid water
were neglected, then the right side of Eq. (13a) would equal 2.373 x 10~ °, which, of
course, no longer equals the left side which it must. If the unit volumes had included
the molar hard core volumes of liquid and vapor, then the calculation of the
distribution of moles of water in the liquid and vapor phases in equilibrium would
have been nf;q /niyo = Viro/Vio = 48.4820 x 1077, which, of course, can not be
reconciled with any evaluation of the right side of Eqg. (13a).

At 100°C, the molar free space of liquid water is 4.384692292 cm®mol ~! so that
the value of the left side of Eq. (13a) is 1.456286042 x 10~ * whereas the right side
equals 1.456286042 x 10~ * and these differ by less than 1 x 10”3, All terms in the
numerator of the exponential are important for the evaluation of the right side of
Eq. (13a) at 100°C. Without the last term (the term from tension in liquid water), the
right side would equal 200.1601836 x 10~ 8 and this would mean that the molar free
space volume of water was only 0.06026 cm?, ie. absurdly low. Without the third
term (the term from tension in the vapor), the right side would equal 1.464934486 x
10~*. Without the second term, the right side would equal 1.457180350 x 10 4. All
of these values differ significantly from the value of the left side. Therefore all terms
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must be included in the evaluation of the right side of Eq. (13a). On the other hand,
had the unit volumes included the molar hard core volumes of liquid and vapor then
/Mo = Vio/ Vo = 6.243261077 x 10™% at 100°C, which cannot be equated to
any evaluation of the right side of Eq. (13a). At the critical temperature and pressure
of water, the first two terms in the exponential of Eq. (13b) are zero so that the molar
hard core volumes of liquid and vapor water are about 14.1 cm? mol ™!,

CONCLUSIONS

The Boltzmann energy distribution principle and the equation of state for atoms and
molecules in any phase are applicable to pure species i only if the hard core volume
of the atoms or molecules is excluded from their molar volume. Only the free space
volume available for the random translational motion of the centers of mass of atoms
or molecules is to be used in these two fundamental relationships. The internal tension
in the cohesion between atoms or molecules of a single species in any phase also
depends on the molar free space volume. Thus, the only workable analysis of the
thermodynamic data pertaining to liquid water and its vapor from 0°C to 100°C
must be based on unit volumes which exclude the hard core volumes of water in its
liquid and vapor phases. The analysis must also include the effects of cohesion
between water molecules, in both liquid and vapor phases, on the pressure volume
work during vaporization.

When species i is the solvent A in a solution, the internal pressure exerted by solute
and solvent against a free boundary of the solution exceeds the internal pressure
exerted by pure solvent against a free boundary by an amount equal to the osmotic
pressure of the solvent in the solution, 7, (Hammel). This lowers the vapor pressure
of the solvent in the solution exactly as would increasing the applied tension in pure
A an amount 7. The extent to which this alters the distribution of molecules between
the vapor and liquid phases may be determined by modifying the numerator of the
exponential in Eq. (13) so as to include the effects of the increased tension applied
to the pure water. The increased tension will have small (but not insignificant) effects
on the enthalpies of the liquid and the vapor and on the molar volumes of the liquid
and the vapor. However, the primary effect of the increased tension will be on the
internal energy of the liquid, i.e. a term —r, V', must be added to the numerator of Eq.
{13). Thus, the work resulting from change of applied tension during vaporization
becomes (p', + ©4)V. When the solvent A is water, Eq. (13a) for pure water becomes

v [ e . . "
___ " fsHO — e‘[AHHJ; +p! Vll«()*"’r’c,o’y l’i.()‘RTV]H,() V;\H,o ”‘IH,()VL,()]/RT 13
* - : : 2 2 2 2 200 T 5 C
Viio = o

where
AHGY" = HitolT. p2(T, p7 — 7o) — Hio T, p2(T, p¥ — o) — Tii,o),
Vlf;zo = Vﬁzo( T. p&(T, p¥ — n{izo) - ”éigo)v V'?i:o = V?;ZO(T’ pI(T, p7 — 7Ileo))

and where Vg0 = Vi ol T, p2(T, p — My0) — Thyo)- The left side of Eq. (13¢) also
equals the ratio of the moles of water in the vapor phase to the moles of water in
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the liquid phase, nf{ o/n,0, i.¢. the distribution of molecules between the two phases
when the applied tension in the pure liquid water was increased by Tci,zo. This
distribution is the same for the water in an aqueous solution in which its osmotic
pressure is 7y 0. The fact that Eq. (13c) yields the distribution of water between its
vapor and liquid phases when the pressure applied to the pure liquid water is
decreased to pf(T, p%' — miyo) — Miy,0, reinforces the validity of Eq. (13a) which
accounts for the distribution when the pressure applied to the pure liquid water is
p2(T, p?). Tension in the cohesive force between the molecules of pure liquid water,
whether altered by the thermal motion of its molecules reflecting from its boundaries
or caused by an applied negative pressure, effects the internal energy of the liquid
water. The change in this internal energy during the transition to vapor is an essential
part of the pressure-volume work of vaporization and it must be included when
applying the Boltzmann distribution principle to liquid in equilibrium with its vapor.

Calculations of the molar free space and molar hard core volumes of pure liquid
water as a function of temperature reveal that V7, increases with increasing
temperature without an inflection between 0°C and 5°C and that VL:Hzo decreases
with increasing temperature without an inflection between 0 and 5°C even though
the molar volume of water, Vﬁzo, has a minimum at 3.8°C. At the critical temperature
and pressure of water, the molar free space and hard core volumes of liquid water
are identical with these volumes of water vapor.
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